Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Sci Data ; 11(1): 338, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580759

RESUMO

Athetis lepigone is an emerging highly polyphagous insect pest reported to cause crop damage in several European and Asian countries. However, our understanding of its genetic adaptation mechanisms has been limited due to lack of high-quality genetic resources. In this study, we present a chromosomal-level genome of A. lepigone, representing the first species in the genus of Athetis. We employed PacBio long-read sequencing and Hi-C technologies to generate 612.49 Mb genome assembly which contains 42.43% repeat sequences with a scaffold N50 of 20.9 Mb. The contigs were successfully clustered into 31 chromosomal-size scaffolds with 37% GC content. BUSCO assessment revealed a genome completeness of 97.4% with 96.3 identified as core Arthropoda single copy orthologs. Among the 17,322 genes that were predicted, 15,965 genes were functionally annotated, representing a coverage of 92.17%. Furthermore, we revealed 106 P450, 37 GST, 27 UGT, and 74 COE gene families in the genome of A. lepigone. This genome provides a significant and invaluable genomic resource for further research across the entire genus of Athetis.


Assuntos
Genoma de Inseto , Mariposas , Animais , Sequência de Bases , Genômica , Mariposas/genética , Filogenia , Cromossomos de Insetos
2.
Nat Commun ; 15(1): 2559, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519521

RESUMO

Proteins containing a ubiquitin regulatory X (UBX) domain are cofactors of Cell Division Cycle 48 (CDC48) and function in protein quality control. However, whether and how UBX-containing proteins participate in host-microbe interactions remain unclear. Here we show that MoNLE1, an effector from the fungal pathogen Magnaporthe oryzae, is a core virulence factor that suppresses rice immunity by specifically interfering with OsPUX8B.2. The UBX domain of OsPUX8B.2 is required for its binding to OsATG8 and OsCDC48-6 and controls its 26 S proteasome-dependent stability. OsPUX8B.2 and OsCDC48-6 positively regulate plant immunity against blast fungus, while the high-temperature tolerance heat-shock protein OsBHT, a putative cytoplasmic substrate of OsPUX8B.2-OsCDC48-6, negatively regulates defense against blast infection. MoNLE1 promotes the nuclear migration and degradation of OsPUX8B.2 and disturbs its association with OsBHT. Given the high conservation of MoNLE1 among fungal isolates, plants with broad and durable blast resistance might be generated by engineering intracellular proteins resistant to MoNLE1.


Assuntos
Magnaporthe , Oryza , Interações Hospedeiro-Patógeno , Imunidade Vegetal/genética , Transporte Biológico , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
3.
Insect Sci ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414321

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda, has colonized and caused consistent damage in the Eastern hemisphere. The identification of various FAW strains is essential for developing precise prevention and control measures. The triosephosphate isomerase (Tpi) gene is recognized as an effective marker closely linked to FAW subpopulations. However, most current studies primarily focus on the comparison of variations in specific gene sites of this gene. In this study, we conducted full-length sequencing of the Tpi genes from 5 representative FAW groups. Our findings revealed that the Tpi genes varied in length from 1220 to 1420 bp, with the primary variation occurring within 4 introns. Notably, the exon lengths remained consistent, at 747 bp, with 37 observed base variations; however, no amino acid variations were detected. Through sequence alignment, we identified 8 stable variation sites that can be used to distinguish FAW strains in the Eastern hemisphere. Additionally, we performed strain identification on 1569 FAW samples collected from 19 provinces in China between 2020 and 2021. The extensive analysis indicated the absence of the rice strain in the samples. Instead, we only detected the presence of the corn strain and the Zambia strain, with the Zambia strain being distributed in a very low proportion (3.44%). Furthermore, the corn strain could be further categorized into 2 subgroups. This comprehensive study provides a valuable reference for enhancing our understanding of FAW population differentiation and for improving monitoring and early warning efforts.

4.
BMC Biol ; 22(1): 42, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378556

RESUMO

BACKGROUND: The adaptive mechanisms of agricultural pests are the key to understanding the evolution of the pests and to developing new control strategies. However, there are few studies on the genetic basis of adaptations of agricultural pests. The turnip moth, Agrotis segetum (Lepidoptera: Noctuidae) is an important underground pest that affects a wide range of host plants and has a strong capacity to adapt to new environments. It is thus a good model for studying the adaptive evolution of pest species. RESULTS: We assembled a high-quality reference genome of A. segetum using PacBio reads. Then, we constructed a variation map of A. segetum by resequencing 98 individuals collected from six natural populations in China. The analysis of the population structure showed that all individuals were divided into four well-differentiated populations, corresponding to their geographical distribution. Selective sweep analysis and environmental association studies showed that candidate genes associated with local adaptation were functionally correlated with detoxification metabolism and glucose metabolism. CONCLUSIONS: Our study of A. segetum has provided insights into the genetic mechanisms of local adaptation and evolution; it has also produced genetic resources for developing new pest management strategies.


Assuntos
Metagenômica , Mariposas , Animais , Mariposas/genética , China
5.
Sci Data ; 11(1): 134, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272921

RESUMO

The pink stem borer, Sesamia inferens (Walker), is a significant polyphagous pest historically restricted to regions south of N34° latitude. However, with changes in global climate and farming practices, the distribution of this moth has progressively exceeded its traditional limit of 34° N and encompassed most regions in North China. The genetic adaptations of S. inferens remain incompletely understood due to the lack of high-quality genome resources. Here, we sequenced the genome of S. inferens using PacBio and Hi-C technology, yielding a genome assembly of 865.04 Mb with contig N50 of 1.23 Mb. BUSCO analysis demonstrated this genome assembly has a high-level completeness of 96.1% gene coverage. In total, 459.72 Mb repeat sequences (53.14% of the assembled genome) and 20858 protein-coding genes were identified. We used the Hi-C technique to anchor 1135 contigs to 31 chromosomes, yielding a chromosome-level genome assembly with a scaffold N50 of 29.99 Mb. In conclusion, our high-quality genome assembly provided valuable resource that exploring the genetic characteristics of local adaptation and developing an efficient control strategy.


Assuntos
Cromossomos , Genoma de Inseto , Mariposas , Animais , Sequência de Bases , Mariposas/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico
6.
Insect Sci ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38204333

RESUMO

Understanding the genetic basis of adaptive evolution following habitat expansion can have important implications for pest management. The pink rice borer (PRB), Sesamia inferens (Walker), is a destructive pest of rice that was historically restricted to regions south of 34° N latitude in China. However, with changes in global climate and farming practices, the distribution of this moth has progressively expanded, encompassing most regions in North China. Here, 3 highly differentiated subpopulations were discovered using high-quality single-nucleotide polymorphism and structural variant datasets across China, corresponding to northern, southern China regions, and the Yunnan-Guizhou Plateau, with significant patterns of isolation by geographic and environmental distances. Our estimates of evolutionary history indicate asymmetric migration with varying population sizes across the 3 subpopulations. Selective sweep analyses estimated strong selection at insect cuticle glycine-rich cuticular protein genes which are associated with enhanced desiccation adaptability in the northern group, and at the histone-lysine-N-methyltransferase gene associated with range expansion and local adaptation in the Shandong population. Our findings have significant implications for the development of effective strategies to control this pest.

7.
Sci Data ; 10(1): 805, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973925

RESUMO

The yellow peach moth, Conogethes punctiferalis, is a highly polyphagous pest widespread in eastern and southern Asia. It demonstrates a unique ability to adapt to rotten host fruits and displays resistance to pathogenic microorganisms, including fungi. However, the lack of available genomic resources presents a challenge in comprehensively understanding the evolution of its innate immune genes. Here, we report a high-quality chromosome-level reference genome for C. punctiferalis utilizing PacBio HiFi sequencing and Hi-C technology. The genome assembly was 494 Mb in length with a contig N50 of 3.25 Mb. We successfully anchored 1,226 contigs to 31 pseudochromosomes. Our BUSCO analysis further demonstrated a gene coverage completeness of 96.3% in the genome assembly. Approximately 43% repeat sequences and 21,663 protein-coding genes were identified. In addition, we resequenced 110 C. punctiferalis individuals from east China, achieving an average coverage of 18.4 × and identifying 5.8 million high-quality SNPs. This work provides a crucial resource for understanding the evolutionary mechanism of C. punctiferalis' innate immune system and will help in developing new antibacterial drugs.


Assuntos
Genoma de Inseto , Mariposas , Animais , Cromossomos , Genômica , Mariposas/genética , Filogenia , Sequenciamento Completo do Genoma
8.
Commun Biol ; 6(1): 1064, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857697

RESUMO

The rapid evolution of resistance in agricultural pest poses a serious threat to global food security. However, the mechanisms of resistance through metabolic regulation are largely unknown. Here, we found that a GST gene cluster was strongly selected in North China (NTC) population, and it was significantly genetically-linked to lambda-cyhalothrin resistance. Knockout of the GST cluster using CRISPR/Cas9 significantly increased the sensitivity of the knockout strain to lambda-cyhalothrin. Haplotype analysis revealed no non-synonymous mutations or structural variations in the GST cluster, whereas GST_119 and GST_121 were significantly overexpressed in the NTC population. Silencing of GST_119 or co-silencing of GST_119 and GST_121 with RNAi significantly increased larval sensitivity to lambda-cyhalothrin. We also identified additional GATAe transcription factor binding sites in the promoter of NTC_GST_119. Transient expression of GATAe in Hi5 cells activated NTC_GST_119 and Xinjiang (XJ)_GST_119 transcription, but the transcriptional activity of NTC_GST_119 was significantly higher than that of XJ_GST_119. These results demonstrate that variations in the regulatory region result in complex expression changes in the GST cluster, which enhances lambda-cyhalothrin resistance in field-populations. This study deepens our knowledge of the evolutionary mechanism of pest adaptation under environmental stress and provides potential targets for monitoring pest resistance and integrated management.


Assuntos
Inseticidas , Mariposas , Piretrinas , Animais , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Mariposas/genética , Piretrinas/farmacologia
9.
Proc Natl Acad Sci U S A ; 120(44): e2306932120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37874855

RESUMO

Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized control of some major pests. However, more than 25 cases of field-evolved practical resistance have reduced the efficacy of transgenic crops producing crystalline (Cry) Bt proteins, spurring adoption of alternatives including crops producing the Bt vegetative insecticidal protein Vip3Aa. Although practical resistance to Vip3Aa has not been reported yet, better understanding of the genetic basis of resistance to Vip3Aa is urgently needed to proactively monitor, delay, and counter pest resistance. This is especially important for fall armyworm (Spodoptera frugiperda), which has evolved practical resistance to Cry proteins and is one of the world's most damaging pests. Here, we report the identification of an association between downregulation of the transcription factor gene SfMyb and resistance to Vip3Aa in S. frugiperda. Results from a genome-wide association study, fine-scale mapping, and RNA-Seq identified this gene as a compelling candidate for contributing to the 206-fold resistance to Vip3Aa in a laboratory-selected strain. Experimental reduction of SfMyb expression in a susceptible strain using RNA interference (RNAi) or CRISPR/Cas9 gene editing decreased susceptibility to Vip3Aa, confirming that reduced expression of this gene can cause resistance to Vip3Aa. Relative to the wild-type promoter for SfMyb, the promoter in the resistant strain has deletions and lower activity. Data from yeast one-hybrid assays, genomics, RNA-Seq, RNAi, and proteomics identified genes that are strong candidates for mediating the effects of SfMyb on Vip3Aa resistance. The results reported here may facilitate progress in understanding and managing pest resistance to Vip3Aa.


Assuntos
Bacillus thuringiensis , Inseticidas , Animais , Bacillus thuringiensis/genética , Spodoptera/genética , Toxinas de Bacillus thuringiensis/metabolismo , Regulação para Baixo , Fatores de Transcrição/metabolismo , Estudo de Associação Genômica Ampla , Inseticidas/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/metabolismo , Produtos Agrícolas/genética , Endotoxinas/genética , Endotoxinas/farmacologia , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Resistência a Inseticidas/genética , Larva/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
10.
Front Physiol ; 14: 1254765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680771

RESUMO

Introduction: The development of insecticide resistance in Spodoptera frugiperda populations is a serious threat to the crop industry. Given the spread of invasive resistant populations, prospective monitoring should be accelerated, and the development of diagnostic tools for rapid and accurate assessments of insecticide resistance is essential. Methods: First, the discriminating dose and diagnostic time of the kit were determined by the glass vial method based on a susceptible strain. Then, pests that were collected from field populations were used to determine their susceptibility to seven insecticides by using the diagnostic kit. Finally, the accuracy of the kit was verified based on correlation analyses and the likelihood of insecticide control failure was assessed. Results: Here, we describe a diagnostic kit that enables the rapid detection of resistance to chlorpyrifos, bifenthrin, deltamethrin, lambda-cyhalothrin, phoxim, chlorantraniliprole and chlorfenapyr within 1-2 h in S. frugiperda at diagnostic doses of 0.98, 0.84, 0.38, 1.64, 0.0082, 1.75 and 0.65 µg/cm2, respectively. The linear equation between mortalities under diagnostic doses and actual resistance ratios measured by the diet-overlay bioassay was determined. The high correlation indicates that the insecticide resistance levels diagnosed by the kit were consistent with the results of the diet-overlay bioassay. Moreover, we found a significant negative correlation between diagnostic mortality and the likelihood of control failure for bifenthrin (r = -0.899, p = 0.001), deltamethrin (r = -0.737, p = 0.024) and lambda-cyhalothrin (r = -0.871, p = 0.002). Discussion: The insecticide resistance diagnostic kit for S. frugiperda is a user-friendly tool (portable, short detection time). Its excellent performance qualifies the kit as a reliable screening tool for identifying effective insecticides in sustainable resistance management.

11.
Mitochondrial DNA B Resour ; 8(9): 963-966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701525

RESUMO

Tethea albicostata is a widely distributed insect species in northern and central China. To date, few studies have been conducted on this species, with the exception of morphological taxonomy studies. Here, we report the complete mitochondrial genome of T. albicostata collected in China. The circular-mapping mitogenome is 15,308 bp in length, with an overall A + T content of 80.52%, encoding 2 ribosomal RNA genes, 22 transfer RNA genes, and 13 protein-coding genes. The gene arrangement and components of T. albicostata are identical to those of most other Lepidopteran insects. Phylogenetic analysis based on mitogenomes showed that T. albicostata is grouped with Drepana pallida, which belongs to the same family as Drepanidae. The family Drepanidae formed a separate branch from other families in the phylogenetic tree. This study determined the second mitochondrial genome of the Drepanidae species.

12.
Pestic Biochem Physiol ; 194: 105516, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532331

RESUMO

Helicoverpa armigera is a worldwide pest that has been efficiently controlled by transgenic plants expressing Bt Cry toxins. To exert toxicity, Cry toxins bind to different receptors located in larval midgut cells. Previously, we reported that GATA transcription factor GATAe activates the expression of multiple H. armigera Cry1Ac receptors in different insect cell lines. Here, the mechanism involved in GATAe regulation of HaABCC2 gene expression, a key receptor of Cry1Ac, was analyzed. HaGATAe gene silencing by RNAi in H. armigera larvae confirmed the activation role of HaGATAe on the expression of HaABCC2 in the midgut. The contribution of all potential GATAe-binding sites was analyzed by site-directed mutagenesis using Hi5 cells expressing a reporter gene under regulation of different modified HaABCC2 promoters. DNA pull-down assays revealed that GATAe bound to different predicted GATA-binding sites and mutations of the different GATAe-binding sites identified two binding sites responsible for the promoter activity. The binding site B9, which is located near the transcription initiator site, has a major contribution on HaABCC2 expression. Also, DNA pull-down assays revealed that all other members of GATA TF family in H. armigera, besides GATAe, HaGATAa, HaGATAb, HaGATAc and HaGATAd also bound to the HaABCC2 promoter and decreased the GATAe dependent promoter activity. Finally, the potential participation in the regulation of HaABCC2 promoter of several TFs other than GATA TFs expressed in the midgut cells was analyzed. HaHR3 inhibited the GATAe dependent activity of the HaABCC2 promoter, while two other midgut-related TFs, HaCDX and HaSox21, also bound to the HaABCC2 promoter region and increased the GATAe dependent promoter activity. All these data showed that GATAe induces HaABCC2 expression by binding to HaGATAe binding sites in the promoter region and that additional TFs participate in modulating the HaGATAe-driven expression of HaABCC2.


Assuntos
Helicoverpa armigera , Inseticidas , Fatores de Transcrição GATA , Proteína 2 Associada à Farmacorresistência Múltipla/genética , Animais , Inseticidas/toxicidade
13.
Mol Ecol ; 32(20): 5463-5478, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37638537

RESUMO

The major plant pest fall armyworm (FAW), Spodoptera frugiperda, is native to the Americas and has colonized Africa and Asia within the Eastern hemisphere since 2016, causing severe damage to multiple agricultural crop species. However, the genetic origin of these invasive populations requires more in-depth exploration. We analysed genetic variation across the genomes of 280 FAW individuals from both the Eastern hemisphere and the Americas. The global range-wide genetic structure of FAW shows that the FAW in America has experienced deep differentiation, largely consistent with the Z-chromosomal Tpi haplotypes commonly used to differentiate 'corn-strain' and 'rice-strain' populations. The invasive populations from Africa and Asia are different from the American ones and have a relatively homogeneous population structure, consistent with the common origin and recent spreading from Africa to Asia. Our analyses suggest that north- and central American 'corn-strain' FAW are the most likely sources of the invasion into the Eastern hemisphere. Furthermore, evidence based on genomic, transcriptomic and mitochondrial haplotype network analyses indicates an earlier, independent introduction of FAW into Africa, with subsequent migration into the recent invasive population.

14.
Int J Biol Macromol ; 244: 125392, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37321433

RESUMO

The fall armyworm, Spodoptera frugiperda, is a devastating pest in its native range Western Hemisphere and has become a major invasive pest around the globe. Transgenic crops producing Bt toxins have been widely used to control S. frugiperda. However, the evolution of resistance threatens the sustainability of Bt crops. Field-evolved S. frugiperda resistance to Bt crops was observed in America, whereas, no case of field-resistance was reported in its newly invaded East Hemisphere. Here we investigated the molecular mechanism of a Cry1Ab-resistant LZ-R strain of S. frugiperda, which selected 27-generations using Cry1Ab after being collected in corn fields from China. Complementation tests between LZ-R strain and SfABCC2-KO strain, which have been knockout SfABCC2 gene and confer 174-fold resistance to Cry1Ab, showed a similar level of resistance in the F1-progeny as their parent stains, indicating that a common locus of SfABCC2 mutation in LZ-R stain. Sequencing of the full length of SfABCC2 cDNA from LZ-R strain, we characterize a novel mutation allele of SfABCC2. Cross-resistance results showed that Cry1Ab-resistance strain also confers >260-fold resistance to Cry1F, with no cross-resistance to Vip3A. These results provided evidence of a novel SfABCC2 mutation allele in the newly invaded East Hemisphere of S. frugiperda.


Assuntos
Bacillus thuringiensis , Endotoxinas , Animais , Endotoxinas/genética , Endotoxinas/farmacologia , Spodoptera/genética , Alelos , Proteínas de Bactérias/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Plantas Geneticamente Modificadas/genética , Zea mays/genética , Produtos Agrícolas/genética , Bacillus thuringiensis/genética , Larva
15.
Innovation (Camb) ; 4(4): 100454, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37388193

RESUMO

The cotton bollworm, Helicoverpa armigera, is set to become the most economically devastating crop pest in the world, threatening food security and biosafety as its range expands across the globe. Key to understanding the eco-evolutionary dynamics of H. armigera, and thus its management, is an understanding of population connectivity and the adaptations that allow the pest to establish in unique environments. We assembled a chromosome-scale reference genome and re-sequenced 503 individuals spanning the species range to delineate global patterns of connectivity, uncovering a previously cryptic population structure. Using a genome-wide association study (GWAS) and cell line expression of major effect loci, we show that adaptive changes in a temperature- and light-sensitive developmental pathway enable facultative diapause and that adaptation of trehalose synthesis and transport underlies cold tolerance in extreme environments. Incorporating extensive pesticide resistance monitoring, we also characterize a suite of novel pesticide and Bt resistance alleles under selection in East China. These findings offer avenues for more effective management strategies and provide insight into how insects adapt to variable climatic conditions and newly colonized environments.

16.
Mol Biol Evol ; 40(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37155936

RESUMO

Understanding the genetic basis of pest adaptive evolution and the risk of adaptation in response to climate change is essential for the development of sustainable agricultural practices. However, the genetic basis of climatic adaptation for the Asian corn borer (ACB), Ostrinia furnacalis, the main pest of corn in Asia and Oceania, is poorly understood. Here, we revealed the genomic loci underlying the climatic adaptation and evolution in ACB by integrating population genomic and environmental factors. We assembled a 471-Mb chromosome-scale reference genome of ACB and resequenced 423 individuals covering 27 representative geographic areas. We inferred that the ACB effective population size changes tracked with the global temperature and followed by a recent decline. Based on an integrated analysis of whole-genome selection scans and genome-wide genotype-environment association studies, we revealed the genetic basis of ACB adaption to diverse climates. For diapause traits, we identified a major effect association locus containing a circadian clock gene (period) by analyzing a diapause-segregating population. Moreover, our predictions indicated that the northern populations were more ecologically resilient to climate change than the southern populations. Together, our results revealed the genomic basis for ACB environmental adaptation and provided potential candidate genes for future evolutionary studies and genetic adaptation to climate change, intending to maintain the efficacy and sustainability of novel control techniques.


Assuntos
Mariposas , Zea mays , Animais , Zea mays/genética , Metagenômica , Biodiversidade , Temperatura , Mariposas/genética , Ásia
17.
Int J Biol Macromol ; 242(Pt 3): 124981, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37236572

RESUMO

The fall armyworm, Spodoptera frugiperda (J. E. Smith), has become one of the most damaging pests worldwide since its invasion of Africa, Asia and Oceania from 2016, threatening plants in 76 families including important crops. Genetics-based methods have proved to be an efficient way to control pests, especially invasive species, but many difficulties must be overcome to develop a transgenic insect strain, especially for a non-model species. Here we thus sought to identify a visible marker that would facilitate the distinction between genetically modified (GM) and non-transgenic insects, thereby simplifying mutation identification and facilitating the broader application of genome editing tools in non-model insects. Five genes (sfyellow-y, sfebony, sflaccase2, sfscarlet, and sfok) that are orthologs of well-studied genes in pigment metabolism were knocked out using the CRISPR/Cas9 system to identify candidate gene markers. Two genes, Sfebony and Sfscarlet, were identified responsible for body and compound eye coloration, respectively, in S. frugiperda, and could be potential visual markers for genetics-based pest management strategies.


Assuntos
Mariposas , Humanos , Animais , Spodoptera/genética , Pigmentação/genética , Produtos Agrícolas , Zea mays , Larva
18.
Mol Plant Microbe Interact ; 36(7): 447-451, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37097710

RESUMO

The maize anthracnose stalk rot and leaf blight diseases caused by the fungal pathogen Colletotrichum graminicola is emerging as an important threat to corn production worldwide. In this work, we provide an improved genome assembly of a C. graminicola strain (TZ-3) by using the PacBio Sequel II and Illumina high-throughput sequencing technologies. The genome of TZ-3 consists of 36 contigs with a length of 59.3 Mb. After correction and evaluation with the Illumina sequencing data and BUSCO, this genome showed a high assembly quality and integrity. Gene annotation of this genome predicted 11,911 protein-coding genes, among which 983 secreted protein-coding genes and 332 effector genes were predicted. Compared with previous genomes of C. graminicola strains, TZ-3 genome is superior in nearly all parameters. The genome assembly and annotation will enhance our knowledge of the genetic makeup of the pathogen and molecular mechanisms underlying its pathogenicity and will provide valuable insights into genome variation across different regions. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Colletotrichum , Anotação de Sequência Molecular , Colletotrichum/genética , China , Doenças das Plantas/microbiologia
19.
Mol Plant ; 16(4): 739-755, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36872602

RESUMO

During effector-triggered immunity (ETI) against the devastating rice blast pathogen Magnaporthe oryzae, Pi9 functions as an intracellular resistance protein sensing the pathogen-secreted effector AvrPi9 in rice. Importantly, the underlying recognition mechanism(s) between Pi9 and AvrPi9 remains elusive. In this study, we identified a rice ubiquitin-like domain-containing protein (UDP), AVRPI9-INTERACTING PROTEIN 1 (ANIP1), which is directly targeted by AvrPi9 and also binds to Pi9 in plants. Phenotypic analysis of anip1 mutants and plants overexpressing ANIP1 revealed that ANIP1 negatively modulates rice basal defense against M. oryzae. ANIP1 undergoes 26S proteasome-mediated degradation, which can be blocked by both AvrPi9 and Pi9. Moreover, ANIP1 physically associates with the rice WRKY transcription factor OsWRKY62, which also interacts with AvrPi9 and Pi9 in plants. In the absence of Pi9, ANIP1 negatively regulates OsWRKY62 abundance, which can be promoted by AvrPi9. Accordingly, knocking out of OsWRKY62 in a non-Pi9 background decreased immunity against M. oryzae. However, we also observed that OsWRKY62 plays negative roles in defense against a compatible M. oryzae strain in Pi9-harboring rice. Pi9 binds to ANIP1 and OsWRKY62 to form a complex, which may help to keep Pi9 in an inactive state and weaken rice immunity. Furthermore, using competitive binding assays, we showed that AvrPi9 promotes Pi9 dissociation from ANIP1, which could be an important step toward ETI activation. Taken together, our results reveal an immune strategy whereby a UDP-WRKY module, targeted by a fungal effector, modulates rice immunity in distinct ways in the presence or absence of the corresponding resistance protein.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Magnaporthe/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Difosfato de Uridina/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Resistência à Doença/genética
20.
Mitochondrial DNA B Resour ; 8(2): 310-313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860474

RESUMO

The lawn cutworm, Spodoptera depravata, is one of the most important pests that causes economic damage to grass crops. This study reports the complete mitochondrial genome of an S. depravata sample collected in China. The genome is a circular molecule 15,460 bp in length with an overall A + T content of 81.6%. It contains 13 protein-coding genes, 22 transfer RNA genes, and two ribosomal RNA genes. The gene content and organization of the mitogenome of S. depravata are identical to those of other Spodoptera species. Maximum-likelihood phylogenetic analysis based on mitogenomes showed a close evolutionary relationship between S. depravata and S. exempta. This study provides new molecular data for the identification and further phylogenetic analyses of Spodoptera species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA